Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 638
1.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Article En | MEDLINE | ID: mdl-38323672

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Bombyx , Nucleopolyhedroviruses , Uric Acid , Animals , Bombyx/virology , Bombyx/genetics , Bombyx/metabolism , Bombyx/growth & development , Uric Acid/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/growth & development , Larva/virology , Metalloproteins/metabolism , Metalloproteins/genetics , Molybdenum Cofactors , RNA Interference
2.
Microbiol Spectr ; 12(2): e0348023, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38193660

The expression of most molybdoenzymes in Escherichia coli has so far been revealed to be regulated by anaerobiosis and requires the presence of iron, based on the necessity of the transcription factor FNR to bind one [4Fe-4S] cluster. One exception is trimethylamine-N-oxide reductase encoded by the torCAD operon, which has been described to be expressed independently from FNR. In contrast to other alternative anaerobic respiratory systems, the expression of the torCAD operon was shown not to be completely repressed by the presence of dioxygen. To date, the basis for the O2-dependent expression of the torCAD operon has been related to the abundance of the transcriptional regulator IscR, which represses the transcription of torS and torT, and is more abundant under aerobic conditions than under anaerobic conditions. In this study, we reinvestigated the regulation of the torCAD operon and its dependence on the presence of iron and identified a novel regulation that depends on the presence of the bis-molybdopterin guanine dinucleotide (bis-MGD) molybdenum cofactor . We confirmed that the torCAD operon is directly regulated by the heme-containing protein TorC and is indirectly regulated by ArcA and by the availability of iron via active FNR and Fur, both regulatory proteins that influence the synthesis of the molybdenum cofactor. Furthermore, we identified a novel regulation mode of torCAD expression that is dependent on cellular levels of bis-MGD and is not used by other bis-MGD-containing enzymes like nitrate reductase.IMPORTANCEIn bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. FNR is a very important transcription factor that represents the master switch for the expression of target genes in response to anaerobiosis. Only Escherichia coli trimethylamine-N-oxide (TMAO) reductase escapes this regulation by FNR. We identified that the expression of TMAO reductase is regulated by the amount of bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor synthesized by the cell itself, representing a novel regulation pathway for the expression of an operon coding for a molybdoenzyme. Furthermore, TMAO reductase gene expression is indirectly regulated by the presence of iron, which is required for the production of the bis-MGD cofactor in the cell.


Escherichia coli Proteins , Escherichia coli , Methylamines , Escherichia coli/genetics , Iron/metabolism , Operon , Escherichia coli Proteins/genetics , Transcription Factors/metabolism , Oxidoreductases/genetics , Molybdenum Cofactors , Oxides/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial
3.
Molecules ; 28(19)2023 Oct 09.
Article En | MEDLINE | ID: mdl-37836841

Sulfite oxidase is one of five molybdenum-containing enzymes known in eukaryotes where it catalyzes the oxidation of sulfite to sulfate. This review covers the history of sulfite oxidase research starting out with the early years of its discovery as a hepatic mitochondrial enzyme in vertebrates, leading to basic biochemical and structural properties that have inspired research for decades. A personal view on sulfite oxidase in plants, that sulfates are assimilated for their de novo synthesis of cysteine, is presented by Ralf Mendel with numerous unexpected findings and unique properties of this single-cofactor sulfite oxidase localized to peroxisomes. Guenter Schwarz connects his research to sulfite oxidase via its deficiency in humans, demonstrating its unique role amongst all molybdenum enzymes in humans. In essence, in both the plant and animal kingdoms, sulfite oxidase represents an important player in redox regulation, signaling and metabolism, thereby connecting sulfur and nitrogen metabolism in multiple ways.


Sulfite Oxidase , Animals , Humans , Sulfite Oxidase/metabolism , Molybdenum/chemistry , Sulfites , Plants/metabolism , Molybdenum Cofactors , Sulfates/metabolism
4.
Cell Mol Neurobiol ; 43(6): 2895-2907, 2023 Aug.
Article En | MEDLINE | ID: mdl-36862242

Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups. One-day-old Wistar rats received an intracerebroventricular administration of sulfite (0.5 µmol/g) or vehicle and were euthanized 30 min after injection. Sulfite administration decreased glutathione levels and glutathione S-transferase activity, and increased heme oxygenase-1 content in vivo in the cerebral cortex. Sulfite also reduced the activities of succinate dehydrogenase, creatine kinase, and respiratory chain complexes II and II-III. Furthermore, sulfite increased the cortical content of ERK1/2 and p38. These findings suggest that redox imbalance and bioenergetic impairment induced by sulfite in the brain are pathomechanisms that may contribute to the neuropathology of newborns with ISOD and MoCD. Sulfite disturbs antioxidant defenses, bioenergetics, and signaling pathways in the cerebral cortex of neonatal rats. CII: complex II; CII-III: complex II-III; CK: creatine kinase; GST: glutathione S-transferase; HO-1: heme oxygenase-1; SDH: succinate dehydrogenase; SO32-: sulfite.


Cerebral Cortex , Energy Metabolism , Molybdenum Cofactors , Sulfite Oxidase , Sulfites , Animals , Rats , Animals, Newborn , Oxidation-Reduction , Sulfites/adverse effects , Sulfite Oxidase/metabolism , Molybdenum Cofactors/metabolism , Rats, Wistar , Homeostasis , Mitochondria/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Antioxidants/metabolism
5.
Biomolecules ; 13(1)2023 01 10.
Article En | MEDLINE | ID: mdl-36671528

Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.


Molybdenum Cofactors , Sulfurtransferases , Humans , Cytosol/metabolism , Sulfurtransferases/metabolism , Energy Metabolism , Sulfur/metabolism , RNA, Transfer/metabolism , Kidney/metabolism , Carbon-Sulfur Lyases/metabolism
6.
J Biol Chem ; 299(1): 102736, 2023 01.
Article En | MEDLINE | ID: mdl-36423681

Molybdenum cofactor (Moco) is a prosthetic group necessary for the activity of four unique enzymes, including the essential sulfite oxidase (SUOX-1). Moco is required for life; humans with inactivating mutations in the genes encoding Moco-biosynthetic enzymes display Moco deficiency, a rare and lethal inborn error of metabolism. Despite its importance to human health, little is known about how Moco moves among and between cells, tissues, and organisms. The prevailing view is that cells that require Moco must synthesize Moco de novo. Although, the nematode Caenorhabditis elegans appears to be an exception to this rule and has emerged as a valuable system for understanding fundamental Moco biology. C. elegans has the seemingly unique capacity to both synthesize its own Moco as well as acquire Moco from its microbial diet. However, the relative contribution of Moco from the diet or endogenous synthesis has not been rigorously evaluated or quantified biochemically. We genetically removed dietary or endogenous Moco sources in C. elegans and biochemically determined their impact on animal Moco content and SUOX-1 activity. We demonstrate that dietary Moco deficiency dramatically reduces both animal Moco content and SUOX-1 activity. Furthermore, these biochemical deficiencies have physiological consequences; we show that dietary Moco deficiency alone causes sensitivity to sulfite, the toxic substrate of SUOX-1. Altogether, this work establishes the biochemical consequences of depleting dietary Moco or endogenous Moco synthesis in C. elegans and quantifies the surprising contribution of the diet to maintaining Moco homeostasis in C. elegans.


Metalloproteins , Molybdenum Cofactors , Sulfite Oxidase , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Diet , Metalloproteins/genetics , Metalloproteins/metabolism , Molybdenum/metabolism , Molybdenum Cofactors/metabolism , Pteridines/metabolism , Sulfite Oxidase/genetics , Sulfite Oxidase/metabolism
7.
Molecules ; 27(20)2022 Oct 14.
Article En | MEDLINE | ID: mdl-36296488

Molybdenum cofactor (Moco) deficiency (MoCD) is characterized by neonatal-onset myoclonic epileptic encephalopathy and dystonia with cerebral MRI changes similar to hypoxic-ischemic lesions. The molecular cause of the disease is the loss of sulfite oxidase (SOX) activity, one of four Moco-dependent enzymes in men. Accumulating toxic sulfite causes a secondary increase of metabolites such as S-sulfocysteine and thiosulfate as well as a decrease in cysteine and its oxidized form, cystine. Moco is synthesized by a three-step biosynthetic pathway that involves the gene products of MOCS1, MOCS2, MOCS3, and GPHN. Depending on which synthetic step is impaired, MoCD is classified as type A, B, or C. This distinction is relevant for patient management because the metabolic block in MoCD type A can be circumvented by administering cyclic pyranopterin monophosphate (cPMP). Substitution therapy with cPMP is highly effective in reducing sulfite toxicity and restoring biochemical homeostasis, while the clinical outcome critically depends on the degree of brain injury prior to the start of treatment. In the absence of a specific treatment for MoCD type B/C and SOX deficiency, we summarize recent progress in our understanding of the underlying metabolic changes in cysteine homeostasis and propose novel therapeutic interventions to circumvent those pathological changes.


Brain Diseases , Metalloproteins , Sulfite Oxidase , Male , Infant, Newborn , Humans , Cysteine , Thiosulfates , Cystine , Coenzymes/metabolism , Metalloproteins/metabolism , Sulfite Oxidase/genetics , Sulfites , Molybdenum Cofactors , Molybdenum
8.
Molecules ; 27(19)2022 Oct 04.
Article En | MEDLINE | ID: mdl-36235107

The molybdenum cofactor (Moco) is the active site prosthetic group found in numerous vitally important enzymes (Mo-enzymes), which predominantly catalyze 2 electron transfer reactions. Moco is synthesized by an evolutionary old and highly conserved multi-step pathway, whereby the metal insertion reaction is the ultimate reaction step here. Moco and its intermediates are highly sensitive towards oxidative damage and considering this, they are believed to be permanently protein bound during synthesis and also after Moco maturation. In plants, a cellular Moco transfer and storage system was identified, which comprises proteins that are capable of Moco binding and release but do not possess a Moco-dependent enzymatic activity. The first protein described that exhibited these properties was the Moco carrier protein (MCP) from the green alga Chlamydomonas reinhardtii. However, MCPs and similar proteins have meanwhile been described in various plant species. This review will summarize the current knowledge of the cellular Moco distribution system.


Chlamydomonas reinhardtii , Metalloproteins , Carrier Proteins/metabolism , Catalytic Domain , Chlamydomonas reinhardtii/metabolism , Coenzymes/chemistry , Metalloproteins/chemistry , Molybdenum/metabolism , Molybdenum Cofactors , Plants/metabolism
9.
Molecules ; 27(17)2022 Aug 23.
Article En | MEDLINE | ID: mdl-36080140

For most organisms molybdenum is essential for life as it is found in the active site of various vitally important molybdenum dependent enzymes (Mo-enzymes). Here, molybdenum is bound to a pterin derivative called molybdopterin (MPT), thus forming the molybdenum cofactor (Moco). Synthesis of Moco involves the consecutive action of numerous enzymatic reaction steps, whereby molybdenum insertases (Mo-insertases) catalyze the final maturation step, i.e., the metal insertion reaction yielding Moco. This final maturation step is subdivided into two partial reactions, each catalyzed by a distinctive Mo-insertase domain. Initially, MPT is adenylylated by the Mo-insertase G-domain, yielding MPT-AMP which is used as substrate by the E-domain. This domain catalyzes the insertion of molybdate into the MPT dithiolene moiety, leading to the formation of Moco-AMP. Finally, the Moco-AMP phosphoanhydride bond is cleaved by the E-domain to liberate Moco from its synthesizing enzyme. Thus formed, Moco is physiologically active and may be incorporated into the different Mo-enzymes or bind to carrier proteins instead.


Metalloproteins , Molybdenum , Adenosine Monophosphate , Catalytic Domain , Coenzymes/chemistry , Metalloproteins/chemistry , Molybdenum/metabolism , Molybdenum Cofactors , Pterins
10.
Molecules ; 27(15)2022 Aug 03.
Article En | MEDLINE | ID: mdl-35956883

The transition element molybdenum (Mo) is an essential micronutrient for plants, animals, and microorganisms, where it forms part of the active center of Mo enzymes. To gain biological activity in the cell, Mo has to be complexed by a pterin scaffold to form the molybdenum cofactor (Moco). Mo enzymes and Moco are found in all kingdoms of life, where they perform vital transformations in the metabolism of nitrogen, sulfur, and carbon compounds. In this review, I recall the history of Moco in a personal view, starting with the genetics of Moco in the 1960s and 1970s, followed by Moco biochemistry and the description of its chemical structure in the 1980s. When I review the elucidation of Moco biosynthesis in the 1990s and the early 2000s, I do it mainly for eukaryotes, as I worked with plants, human cells, and filamentous fungi. Finally, I briefly touch upon human Moco deficiency and whether there is life without Moco.


Metalloproteins , Molybdenum Cofactors , Animals , Coenzymes/chemistry , Eukaryota/metabolism , Humans , Metalloproteins/metabolism , Molybdenum/metabolism , Molybdenum Cofactors/genetics , Molybdenum Cofactors/metabolism , Plants/metabolism , Pterins
11.
Molecules ; 27(12)2022 Jun 10.
Article En | MEDLINE | ID: mdl-35744859

Molybdenum cofactor (Moco) biosynthesis requires iron, copper, and ATP. The Moco-containing enzyme sulfite oxidase catalyzes terminal oxidation in oxidative cysteine catabolism, and another Moco-containing enzyme, xanthine dehydrogenase, functions in purine catabolism. Thus, molybdenum enzymes participate in metabolic pathways that are essential for cellular detoxication and energy dynamics. Studies of the Moco biosynthetic enzymes MoaE (in the Ada2a-containing (ATAC) histone acetyltransferase complex) and MOCS2 have revealed that Moco biosynthesis and molybdenum enzymes align to regulate signaling and metabolism via control of transcription and translation. Disruption of these functions is involved in the onset of dementia and neurodegenerative disease. This review provides an overview of the roles of MoaE and MOCS2 in normal cellular processes and neurodegenerative disease, as well as directions for future research.


Metalloproteins , Neurodegenerative Diseases , Sulfite Oxidase , Coenzymes/metabolism , Humans , Molybdenum/metabolism , Molybdenum Cofactors , Sulfite Oxidase/metabolism , Sulfurtransferases , Xanthine Dehydrogenase/metabolism
12.
Chemistry ; 28(50): e202201660, 2022 Sep 06.
Article En | MEDLINE | ID: mdl-35670547

In this study we propose to coin the term Wolfium bond (WfB) to refer to a net attractive force (noncovalent interaction) between any element of group 6 and electron donor atoms (neutral molecules or anions) and to differentiate it from a coordination bond (metal-ligand interaction). We provide evidence of the existence of this interaction by inspecting the X-ray crystal structure of proteins containing Molybdopterin and Tungstopterin cofactors from the Protein Data Bank (PDB). The plausible biological role of the interaction as well as its physical nature (antibonding Wf-Ligand orbital involved) are also analyzed by means of ab initio calculations (RI-MP2/def2-TZVP level of theory), Atoms in Molecules (AIM), Natural Bond Orbital (NBO) and Noncovalent Interactions plot (NCIplot) analyses.


Metalloproteins , Quantum Theory , Ligands , Molybdenum Cofactors , Thermodynamics
13.
Molecules ; 27(10)2022 May 15.
Article En | MEDLINE | ID: mdl-35630635

Molybdate uptake and molybdenum cofactor (Moco) biosynthesis were investigated in detail in the last few decades. The present study critically reviews our present knowledge about eukaryotic molybdate transporters (MOT) and focuses on the model plant Arabidopsis thaliana, complementing it with new experiments, filling missing gaps, and clarifying contradictory results in the literature. Two molybdate transporters, MOT1.1 and MOT1.2, are known in Arabidopsis, but their importance for sufficient molybdate supply to Moco biosynthesis remains unclear. For a better understanding of their physiological functions in molybdate homeostasis, we studied the impact of mot1.1 and mot1.2 knock-out mutants, including a double knock-out on molybdate uptake and Moco-dependent enzyme activity, MOT localisation, and protein-protein interactions. The outcome illustrates different physiological roles for Moco biosynthesis: MOT1.1 is plasma membrane located and its function lies in the efficient absorption of molybdate from soil and its distribution throughout the plant. However, MOT1.1 is not involved in leaf cell imports of molybdate and has no interaction with proteins of the Moco biosynthesis complex. In contrast, the tonoplast-localised transporter MOT1.2 exports molybdate stored in the vacuole and makes it available for re-localisation during senescence. It also supplies the Moco biosynthesis complex with molybdate by direct interaction with molybdenum insertase Cnx1 for controlled and safe sequestering.


Arabidopsis , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Molybdenum/metabolism , Molybdenum Cofactors
14.
Molecules ; 27(10)2022 May 22.
Article En | MEDLINE | ID: mdl-35630801

Pterins are bicyclic heterocycles that are found widely across Nature and are involved in a variety of biological functions. Notably, pterins are found at the core of molybdenum cofactor (Moco) containing enzymes in the molybdopterin (MPT) ligand that coordinates molybdenum and facilitates cofactor activity. Pterins are diverse and can be widely functionalized to tune their properties. Herein, the general methods of synthesis, redox and spectroscopic properties of pterin are discussed to provide more insight into pterin chemistry and their importance to biological systems.


Molybdenum Cofactors , Pterins , Molybdenum/chemistry , Oxidation-Reduction , Pterins/chemistry , Spectrum Analysis
15.
Clin Pharmacol Ther ; 112(4): 808-816, 2022 10.
Article En | MEDLINE | ID: mdl-35538648

Therapy of molybdenum cofactor (Moco) deficiency has received US Food and Drug Administration (FDA) approval in 2021. Whereas urothione, the urinary excreted catabolite of Moco, is used as diagnostic biomarker for Moco-deficiency, its catabolic pathway remains unknown. Here, we identified the urothione-synthesizing methyltransferase using mouse liver tissue by anion exchange/size exclusion chromatography and peptide mass fingerprinting. We show that the catabolic Moco S-methylating enzyme corresponds to thiopurine S-methyltransferase (TPMT), a highly polymorphic drug-metabolizing enzyme associated with drug-related hematotoxicity but unknown physiological role. Urothione synthesis was investigated in vitro using recombinantly expressed human TPMT protein, liver lysates from Tpmt wild-type and knock-out (Tpmt-/- ) mice as well as human liver cytosol. Urothione levels were quantified by liquid-chromatography tandem mass spectrometry in the kidneys and urine of mice. TPMT-genotype/phenotype and excretion levels of urothione were investigated in human samples and validated in an independent population-based study. As Moco provides a physiological substrate (thiopterin) of TPMT, thiopterin-methylating activity was associated with TPMT activity determined with its drug substrate (6-thioguanin) in mice and humans. Urothione concentration was extremely low in the kidneys and urine of Tpmt-/- mice. Urinary urothione concentration in TPMT-deficient patients depends on common TPMT polymorphisms, with extremely low levels in homozygous variant carriers (TPMT*3A/*3A) but normal levels in compound heterozygous carriers (TPMT*3A/*3C) as validated in the population-based study. Our work newly identified an endogenous substrate for TPMT and shows an unprecedented link between Moco catabolism and drug metabolism. Moreover, the TPMT example indicates that phenotypic consequences of genetic polymorphisms may differ between drug- and endogenous substrates.


Methyltransferases , Molybdenum Cofactors , Animals , Genotype , Humans , Methyltransferases/physiology , Mice , Mice, Knockout
16.
Virulence ; 13(1): 727-739, 2022 12.
Article En | MEDLINE | ID: mdl-35481455

In Staphylococcus aureus, the SaeRS two-component system is essential for the bacterium's hemolytic activity and virulence. The Newman strain of S. aureus contains a variant of SaeS sensor kinase, SaeS L18P. Previously, we showed that, in the strain Newman, SaeS L18P is degraded by the membrane-bound protease FtsH. Intriguingly, the knockout mutation of clpP, encoding the cytoplasmic protease ClpP, greatly reduces the expression of SaeS L18P. Here, we report that, in the strain Newman, the positive regulatory role of ClpP on the SaeS L18P expression is due to its destabilizing effect on FtsH and degradation of MoeA, a molybdopterin biosynthesis protein. Although the transcription of ftsH was not affected by ClpP, the expression level of FtsH was increased in the clpP mutant. The destabilizing effect appears to be indirect because ClpXP did not directly degrade FtsH in an in vitro assay. Through transposon mutagenesis, we found out that the moeA gene, encoding the molybdopterin biosynthesis protein A, suppresses the hemolytic activity of S. aureus along with the transcription and expression of SaeS L18P. In a proteolysis assay, ClpXP directly degraded MoeA, demonstrating that MoeA is a substrate of the protease. In a murine bloodstream infection model, the moeA mutant displayed reduced virulence and lower survival compared with the WT strain. Based on these results, we concluded that ClpP positively controls the expression of SaeS L18P in an FtsH and MoeA-dependent manner, and the physiological role of MoeA outweighs its suppressive effect on the SaeRS TCS during infection.


Staphylococcal Infections , Staphylococcus aureus , Animals , Coenzymes , Endopeptidases , Mice , Molybdenum Cofactors , Peptide Hydrolases , Staphylococcus aureus/genetics
17.
J Inorg Biochem ; 231: 111801, 2022 06.
Article En | MEDLINE | ID: mdl-35339771

Over 50 molybdenum enzymes in three distinct families (sulfite oxidase, xanthine oxidase, DMSO reductase) are known, and representative X-ray crystal structures are available for all families. Structural analogues that replicate the coordination about the Mo atom in the absence of surrounding protein have been synthesized and characterized. The properties of metal complexes of non-innocent dithiolene ligands and their oxidized counter parts, dithiones, are summarized. Pulsed electron paramagnetic resonance (EPR) spectroscopy of the 33S-labeled molybdenum domain of catalytically active bioengineered sulfite oxidase has clearly demonstrated delocalization of electron density from MoV to the dithiolene component of the molybdenum cofactor (Moco) of the enzyme. Moco is highly covalent and has three redox active components: the Mo atom; the dithiolene; and the pterin. In principle, Moco can have a total of eight redox states, making it one of the most redox rich cofactors in biology. The {Moco}n formalism, developed here, gives the total number of electrons (n) associated with a particular redox state of Moco. This flexible notation eliminates the need to assign a specific oxidation state to each of the three components of Moco and allows for internal redistribution of electrons among the components upon substrate binding, changes in the surrounding network of hydrogen bonds, conformational changes, and catalysis. An unexpected result is that sulfite oxidase (an oxotransferase) is predicted to utilize the {Moco}4-6 electron distributions during catalysis, whereas xanthine oxidase (a hydroxylase) is predicted to utilize the {Moco}6-8 electron distributions during catalysis.


Metalloproteins , Sulfite Oxidase , Coenzymes/metabolism , Electron Spin Resonance Spectroscopy , Humans , Molybdenum/chemistry , Molybdenum Cofactors , Pteridines , Sulfite Oxidase/chemistry
18.
Eur J Med Chem ; 230: 114101, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-35063733

Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. A virtual screening strategy with enhanced characterization of the molybdopterin binding group (MBG) was applied for the identification of novel XO inhibitors. Briefly, a 3D QSAR pharmacophore with fragment recognition capability was constructed by setting the MBG as a customized-pharmacophore feature. In addition, 2D QSAR was established with descriptors based on density functional theory (DFT), physical and chemical properties as well as topological properties. Descriptors related to metal ion recognition were emphasized to enhance the characterization of the MBG and to improve the screening efficiency. The 3D and 2D QSAR models were combined with the pharmacophore derived from XO-inhibitor complexes and docking with hydrogen bond constraints to screen the compound library of Specs. After two rounds of screening, six compounds with significant inhibition against XO were identified and the most active one XO-33 showed an IC50 of 23.3 nM. These compounds are structurally distinct from the known XO inhibitors, and provide new chemical prototypes for further discovery of potent and novel XO inhibitors.


Enzyme Inhibitors , Xanthine Oxidase , Enzyme Inhibitors/pharmacology , Humans , Hyperuricemia , Molecular Docking Simulation , Molybdenum Cofactors , Quantitative Structure-Activity Relationship , Xanthine Oxidase/antagonists & inhibitors
19.
J Inherit Metab Dis ; 45(2): 169-182, 2022 03.
Article En | MEDLINE | ID: mdl-34741542

Isolated sulfite oxidase deficiency (ISOD) is a rare recessive and infantile lethal metabolic disorder, which is caused by functional loss of sulfite oxidase (SO) due to mutations of the SUOX gene. SO is a mitochondrially localized molybdenum cofactor (Moco)- and heme-dependent enzyme, which catalyzes the vital oxidation of toxic sulfite to sulfate. Accumulation of sulfite and sulfite-related metabolites such as S-sulfocysteine (SSC) are drivers of severe neurodegeneration leading to early childhood death in the majority of ISOD patients. Full functionality of SO is dependent on correct insertion of the heme cofactor and Moco, which is controlled by a highly orchestrated maturation process. This maturation involves the translation in the cytosol, import into the intermembrane space (IMS) of mitochondria, cleavage of the mitochondrial targeting sequence, and insertion of both cofactors. Moco insertion has proven as the crucial step in this maturation process, which enables the correct folding of the homodimer and traps SO in the IMS. Here, we report on a novel ISOD patient presented at 17 months of age carrying the homozygous mutation NM_001032386.2 (SUOX):c.1097G > A, which results in the expression of SO variant R366H. Our studies show that histidine substitution of Arg366, which is involved in coordination of the Moco-phosphate, causes a severe reduction in Moco insertion efficacy in vitro and in vivo. Expression of R366H in HEK SUOX-/- cells mimics the phenotype of patient's fibroblasts, representing a loss of SO expression and specific activity. Our studies disclose a general paradigm for a kinetic defect in Moco insertion into SO caused by residues involved in Moco coordination resulting in the case of R366H in an attenuated form of ISOD.


Metalloproteins , Sulfite Oxidase , Amino Acid Metabolism, Inborn Errors , Child, Preschool , Coenzymes/genetics , Coenzymes/metabolism , Heme/genetics , Humans , Metalloproteins/metabolism , Molybdenum Cofactors , Pteridines/metabolism , Sulfite Oxidase/deficiency , Sulfite Oxidase/genetics , Sulfites
20.
Nat Chem ; 13(8): 758-765, 2021 08.
Article En | MEDLINE | ID: mdl-34183818

The molybdenum cofactor (Moco) is found in the active site of numerous important enzymes that are critical to biological processes. The bidentate ligand that chelates molybdenum in Moco is the pyranopterin dithiolene (molybdopterin, MPT). However, neither the mechanism of molybdate insertion into MPT nor the structure of Moco prior to its insertion into pyranopterin molybdenum enzymes is known. Here, we report this final maturation step, where adenylated MPT (MPT-AMP) and molybdate are the substrates. X-ray crystallography of the Arabidopsis thaliana Mo-insertase variant Cnx1E S269D D274S identified adenylated Moco (Moco-AMP) as an unexpected intermediate in this reaction sequence. X-ray absorption spectroscopy revealed the first coordination sphere geometry of Moco trapped in the Cnx1E active site. We have used this structural information to deduce a mechanism for molybdate insertion into MPT-AMP. Given their high degree of structural and sequence similarity, we suggest that this mechanism is employed by all eukaryotic Mo-insertases.


Arabidopsis Proteins , Coenzymes , Molybdenum , Oxidoreductases , Pteridines , Adenosine Monophosphate/analogs & derivatives , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Coenzymes/chemistry , Crystallography, X-Ray , Models, Chemical , Molybdenum/chemistry , Molybdenum Cofactors , Oxidoreductases/chemistry , Pteridines/chemistry
...